Learning Efficient Object Detection Models with Knowledge Distillation
نویسندگان
چکیده
Despite significant accuracy improvement in convolutional neural networks (CNN) based object detectors, they often require prohibitive runtimes to process an image for real-time applications. State-of-the-art models often use very deep networks with a large number of floating point operations. Efforts such as model compression learn compact models with fewer number of parameters, but with much reduced accuracy. In this work, we propose a new framework to learn compact and fast object detection networks with improved accuracy using knowledge distillation [20] and hint learning [34]. Although knowledge distillation has demonstrated excellent improvements for simpler classification setups, the complexity of detection poses new challenges in the form of regression, region proposals and less voluminous labels. We address this through several innovations such as a weighted cross-entropy loss to address class imbalance, a teacher bounded loss to handle the regression component and adaptation layers to better learn from intermediate teacher distributions. We conduct comprehensive empirical evaluation with different distillation configurations over multiple datasets including PASCAL, KITTI, ILSVRC and MS-COCO. Our results show consistent improvement in accuracy-speed trade-offs for modern multi-class detection models.
منابع مشابه
Apprentice: Using Knowledge Distillation Techniques to Improve Low-precision Net-
Deep learning networks have achieved state-of-the-art accuracies on computer vision workloads like image classification and object detection. The performant systems, however, typically involve big models with numerous parameters. Once trained, a challenging aspect for such top performing models is deployment on resource constrained inference systems — the models (often deep networks or wide net...
متن کاملApprentice: Using Knowledge Distillation Techniques to Improve Low-precision Net-
Deep learning networks have achieved state-of-the-art accuracies on computer vision workloads like image classification and object detection. The performant systems, however, typically involve big models with numerous parameters. Once trained, a challenging aspect for such top performing models is deployment on resource constrained inference systems — the models (often deep networks or wide net...
متن کاملApprentice: Using Knowledge Distillation Techniques to Improve Low-precision Net-
Deep learning networks have achieved state-of-the-art accuracies on computer vision workloads like image classification and object detection. The performant systems, however, typically involve big models with numerous parameters. Once trained, a challenging aspect for such top performing models is deployment on resource constrained inference systems — the models (often deep networks or wide net...
متن کاملApprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy
Deep learning networks have achieved state-of-the-art accuracies on computer vision workloads like image classification and object detection. The performant systems, however, typically involve big models with numerous parameters. Once trained, a challenging aspect for such top performing models is deployment on resource constrained inference systems — the models (often deep networks or wide net...
متن کاملData Distillation: Towards Omni-Supervised Learning
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lowerbounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we p...
متن کامل